

Identifier, comprendre et gérer les interactions médicamenteuses Partie I : aspects théoriques

MODULE PHARMACIE CLINIQUE

Pre Chantal Csajka, PharmD, PhD

Directrice, Centre de Recherche et Innovation en Sciences Pharmaceutiques cliniques, Centre Hospitalier Universitaire Vaudois et Université de Lausanne,

Section des sciences pharmaceutiques, Université de Genève

Objectifs d'apprentissage

Identifier

Comprendre Gérer

- +/- bonne spécificité
- +/- bonne sensitivité
- +++ alertes alert fatique

- Citez les principaux types d'interaction pharmacocinétique et donner des exemples d'interactions pharmacodynamiques
- Se mémoriser les concepts principaux des interactions (grandeur, puissance, apparition et durée de l'effet, facteurs influençant)
- Se rappeler des mécanismes impliqués dans les interactions pharmacocinétiques (cytochromes, transporteurs)

Nature des interactions médicamenteuses

PHARMACOCINÉTIQUE

Concerne le devenir du principe actif dans l'organisme (ce que l'organisme fait au médicament)

- Absorption
- Distribution
- Métabolisme
- Elimination

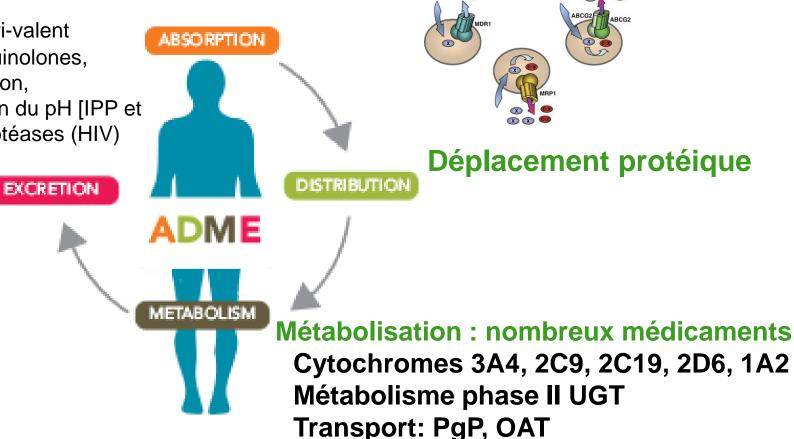
PHARMACODYNAMIQUE

Concerne l'action thérapeutique ou toxique d'un principe actif (ce que le médicament fait à l'organisme)

- Antagonisme
- Synergie
- Addition

Les 2 peuvent survenir concomitamment

Interactions PK


Absorption

Cations, pH Chélation métaux di et tri-valent [Fe²⁺, Mg²⁺, Zn²⁺, Ca²⁺, Al³⁺] ex: fluoroquinolones, tétracyclines / Modification de la dissolution, solubilisation, ionisation par augmentation du pH [IPP et antacides]; Itraconazole, imatinib, antiprotéases (HIV)

Cytochromes, Pgp

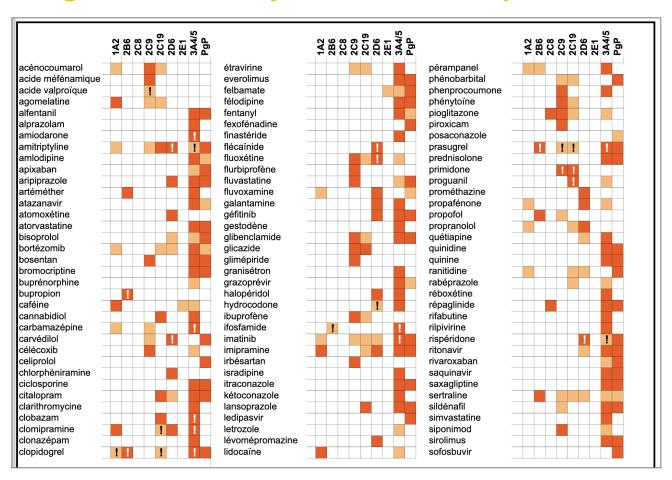
Excrétion : un petit nombre de médicaments

Filtration
Sécrétion
Réabsorption
OAT, OCT, PgP, MRP

I. Cytochromes

Différents niveaux d'analyse

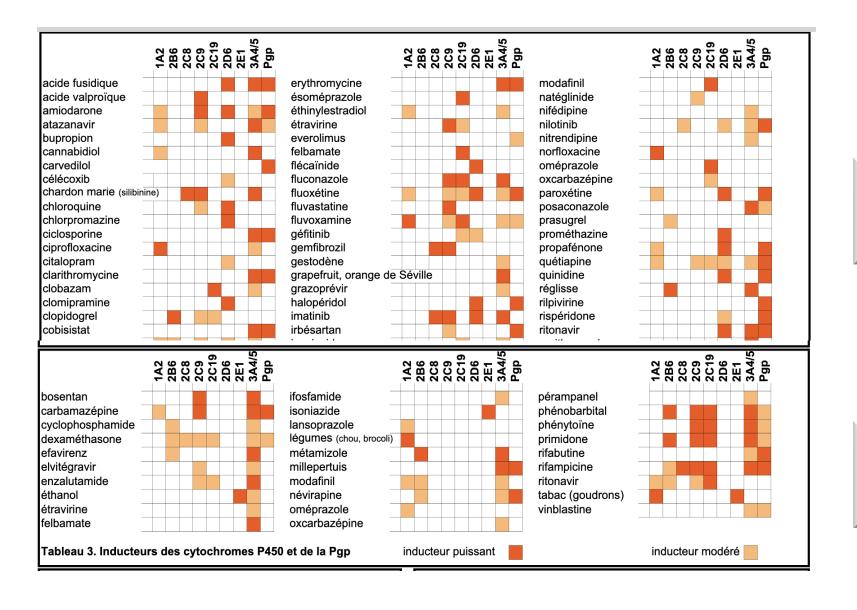
Niveau 1 Présence/absence d'une interaction


Niveau 2 Grandeur d'une interaction

Niveau 3 Notions de temporalité

Niveau 4 Pertinence clinique

Présence/absence d'une interaction 1er niveau d'analyse


https://www.hug.ch/sites/interhug/files/structures/pharmacologie_et_toxicologie_cliniques/images/carte_des_cytochromes_2020.pdf

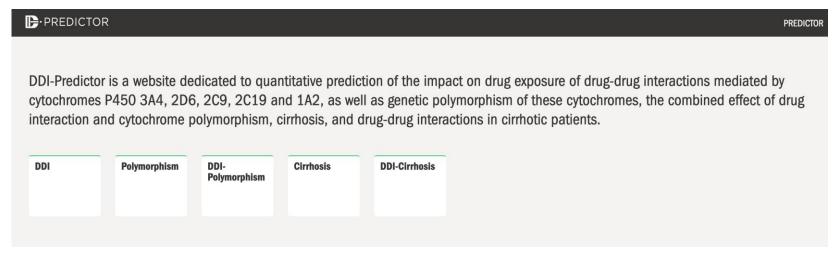
Substrat CYP-PgP

- majeure
- mineure

Attention aux métabolites actifs!

Inhibiteur CYP-PgP

- fort
- modéré


Inducteur CYP-PgP

- fort
- modéré

Grandeur IA: 2ème niveau d'analyse

IA Tacrolimus - Posaconazole

DDI-predictor.org

SUBSTRATE		Fraction metabolized by each CYP							
TACROLIMUS	сурЗА4	cyp2D6	сур2С9	cyp2C19	cyp1A2				
	0.91	0.00	0.00	0.00	0.00				

Grandeur IA ∼ puissance : 2ème niveau d'analyse

	SUBSTRATE		Fraction metabolized by each CYP						
	TACROLIMUS	сурЗА4	cyp2D6	cyp2C9	cyp2C19	cyp1A2			
		0.91	0.00	0.00	0.00	0.00			
INHIBITOR			Inhibition	potency with res	pect to each CYP				
POSACONAZ	ZOLE 300 MG/D	сурЗА4	cyp2D6	cyp2C9	cyp2C19	cyp1A2			
		-0.74	0.00	0.00	0.00	0.00			
_									
INHIBITOR	400 900 MC /D		Inhibition p	Inhibition potency with respect to each CYP					
VORICONAZULE	400-800 MG/D	сурЗА4	cyp2D6	сур2С9	cyp2C19	cyp1A2			
		-0.98	0.00	-0.66	-0.64	0.00			

Grandeur IA ~ dose: 2ème niveau d'analyse

	SUBSTRATE		Fraction metabolized by each CYP						
	TACROLIMUS	сурЗА4	cyp2D6	cyp2C9	cyp2C19	cyp1A2			
		0.91	0.00	0.00	0.00	0.00			
INHIBITOR			Inhibition	potency with res	pect to each CYP				
POSACONAZ	ZOLE 300 MG/D	сурЗА4	cyp2D6	cyp2C9	сур2С19	сур1			
		-0.74	0.00	0.00	0.00	0.0			
INHIBITOR			Inhibition	Inhibition potency with respect to each CYP					
POSACONA	ZOLE 800 MG/D	сурЗА4	cyp2D6	cyp2C9	cyp2C19	сур			
		-0.86	0.00	0.00	0.00	0.0			

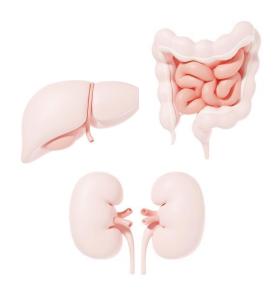
Grandeur IA ~ nombre de voies métaboliques :

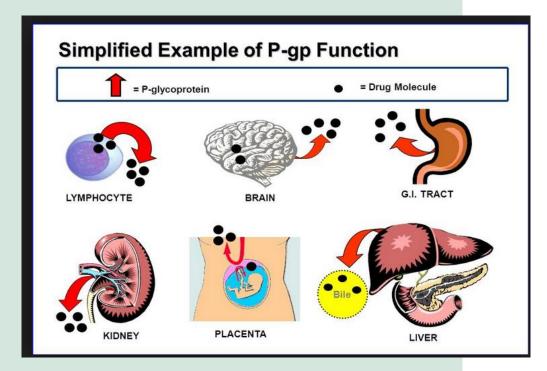
2ème niveau d'analyse

SUBSTRATE	Fraction metabolized by each CYP									
HALOPERIDOL	сурЗА4	cyp2D6	cyp2C9	cyp2C19	cyp1A2					
	0.30	0.50	0.00	0.00	0.00					

INHIBITOR	Inhibition potency with respect to each CYP								
POSACONAZOLE 300 MG/D	сурЗА4	cyp2D6	cyp2C9	cyp2C19	cyp1A2				
	-0.74	0.00	0.00	0.00	0.00				

AUC RATIO	AUC ^{EM*} /AUC ^{EM}	1.29
-----------	---------------------------------------	------

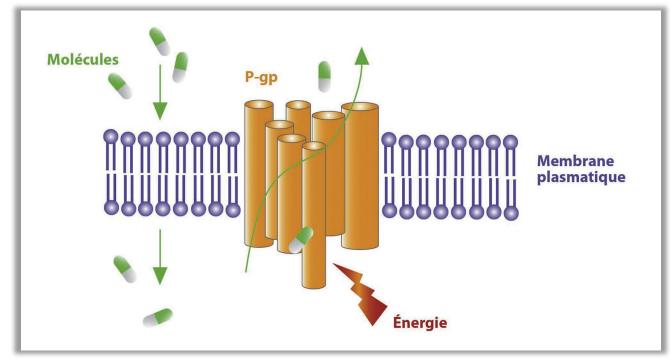

IA ~ temporalité: 3 ème niveau d'analyse


- L'effet d'un inhibiteur apparaît dès les premières doses et est surtout présent au maximum des concentrations
- La durée nécessaire au retour à une activité enzymatique normale après l'arrêt d'un inhibiteur dépend de la t ½ de l'inhibiteur
- L'effet d'un inducteur apparaît progressivement sur 1-2 semaines après son introduction
- La durée nécessaire au retour à une activité enzymatique normale après l'arrêt d'un inducteur est de 2-3 semaines

Pertinence de l'interaction: 4ème niveau d'analyse

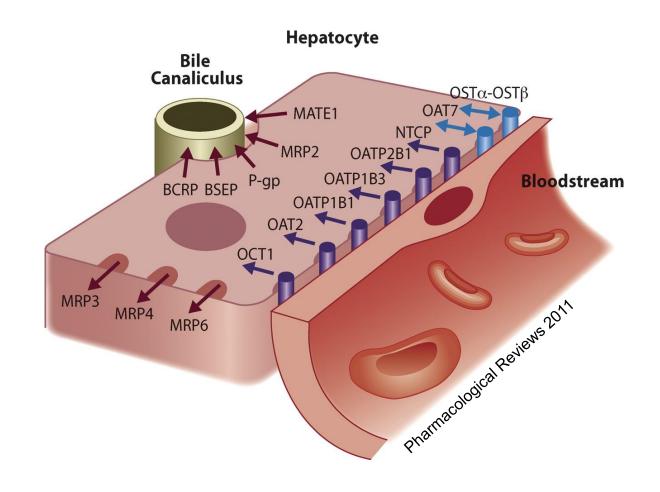
- Marge thérapeutique du médicament
- Durée de traitement
- Biotransformation en métabolites actifs
- Cas cliniques rapportés
- Surveillance d'un paramètre possible ou non?

I. Les transporteurs



P-glycoprotéine

 Transporteur membranaire d'efflux ubiquitaire, chargé de protéger la cellule contre les xénobiotiques



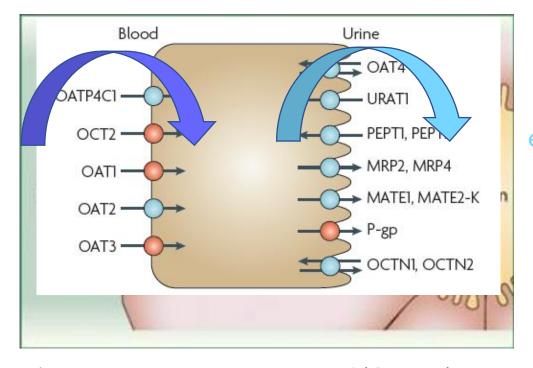
F. Roussin et al. Actualités pharmaceutiques, 2020; 59(601)48-52)

Un inhibiteur ou inducteur de la PgP va affecter le substrat transporté par la Pgp. L'effet est une augmentation ou diminution de la biodisponibilité, respectivement

OATP 1B et statines

- Transporteur d'influx exprimé sur membrane des hépatocytes impliqués dans l'absorption intracellulaire de divers composés, dont les médicaments
- Les inhibiteurs des OATP diminuent les concentrations de médicament dans les hépatocytes et les augmentent au niveau plasmatique
- Conséquence :
 - Toxicitié musculaire 77
 - Effet hyoplipémiant >

Exemples d'autres inhibiteurs des OATP


OATP inhibitors

- Atazanavir (Reyataz®) OATP1B1, OATP1B3 [4]
- Clarithromycin (Biaxin®) OATP1B1, OATP1B3 [1,2]
- Cobicistat (part of Stribild®) OATP1B1, OATP1B3 [3]
- Cyclosporine (Neoral®, Gengraf®, Sandimmune®) OATP1B1, OATP1B3 [1,4]
- Daclatasvir (Daklinza[™]) OATP1B1, OATP1B3 [3]
- Eltrombopag (Promacta®) OATP1B1 [4]
- Erythromycin (E-mycin®) OATP1B1, OATP1B3 [1,2]
- Gemfibrozil (Lopid®) OATP1B1 [1,4]
- Glecaprevir (Mavyret™) OATP1B1, OATP1B3 [3]
- Lopinavir/Ritonavir (Kaletra®) OATP1B1, OATP1B3 [4]
- Letermovir (Prevymis®) OATP1B1, OATP1B3 [3]
- Paritaprevir (Viekira Pak™, Technivie™) OATP1B1, OATP1B3 [3]
- Pibrentasvir (Mavyret™) OATP1B1, OATP1B3 [3]
- Ritonavir/Lopinavir (Kaletra®) OATP1B1, OATP1B3 [4]
- Sacubitril (Entresto®) OATP1B1, OATP1B3 (in vitro) [3]
- Saquinavir (Invirase®) OATP1B1, OATP1B3 [4]
- Simeprevir (Olysio®) OATP1B1, OATP1B3 [3]
- Telithromycin (Ketek®) OATP1B1, OATP1B3 [1,2]
- Teriflunomide (Aubagio®) OATP1B1, OATP1B3 [3]
- Tipranavir (Aptivus®) OATP1B1 [4]
- Rifampin OATP1B1, OATP1B3 [1,4]
- Velpatasvir (Epclusa®, Vosevi™) OATP1B1, OATP1B3, OATP2B1 [3]
- Voxilaprevir (Vosevi™) OATP1B1, OATP1B3 [3]

Transporteurs rénaux

↗ Toxicitésystémique

Influx

✓ Toxicité rénale

efflux

OAT - organic anion transporter OCT - organic cation transporter OATP - organic anion transporting polypeptide MRP – multidrug resistance protein P-gp (MDR1) – P-glycoprotéine PEPT – oligopeptide transporter OCTN – organic cation and carnitine

MATE - multidrug and toxin compound transporter

extrusion protein

Transporteurs rénaux

 Table 2 Exogenous substrates and inhibitors of renal transporters

		Basolateral transporters			Apical transporters									
	OA T1	OA T3	OA TP4 C1	OC T2	OA T4	MR P2	MR P4	BC RP	MA TE 1	MAT E2/M ATE 2-K	P- gp	OC TN 1	OC TN 2	OA TP 1A 2
Anti-infective agents														
β-lactam antibiotic	cs													
Amoxicillin	X	XX		0				0	0	0				
Ampicillin		X		Χ					0	0	0		0	
Avibactam				0			0	0			0			
Azlocillin		XX		0					0					
Aztreonam		0		0					X					
Carbenicillin	X	Χ												
Cefaclor	X	X		0			X		0	X				
Cefadroxil	Х	Х		0	Χ		X		0	X			0	
Cefamandole	xx	xx			X	0	X	0			0			

"Victimes" et "Perpétrateurs" usuels

OAT

Victims	Perpetrators						
Organic anion transport system							
Methotrexate	NSAIDs						
β-Lactam antibiotics	Probenecid						
Ciprofloxacin	Gemfibrozil						
Acyclovir	Proton pump inhibitors						
Ganciclovir	Selected diuretics						
Tenofovir	Selected angiotensin receptor antagonists (valsartan, olmesartan), sacubitril						
	Several β-lactam antibiotics (e.g. cloxacillin, piperacillin, cefazoline)						
	Adefovir						
	Tenofovir						

Ciprofloxacin Mycophenolate

Table 3 Typical victims and perpetrators of drug-drug interactions

OCT

Organic cation transport system	
Creatinine	H2-blockers (cimetidine, ranitidine)
Metformin	Probenecid
Cisplatin and oxaliplatin	Ondansetron
Antiarrhythmic drugs	Procainamide
(quinidine, procainamide,	Dolutegravir
dofetilide, pilsicainide)	Rilpivirine
Antihistaminic drugs (cetirizine, fexofenadine)	Trimethoprim
Amiloride	Pyrimethamine
Lamivudine	Quinine
Lamiyudiic	Tricyclic antidepressants (imipramine, desipramine, amitriptyline)
	Levofloxacin, moxifloxacin
	Amiloride
NSAIDs non-steroidal anti-infla	mmatory drugs

Les interactions pharmacodynamiques

Acholine

5-HT

Interactions PD

Découlent du mécanisme d'action de la paire de médicaments

- Addition d'effet indésirables
 - d'effets anticholinergiques
 - d'effets bradycardisants et arythmogènes (p.ex. anti-histaminiques, antiinfectieux, neuroleptiques et antidépresseurs)
 - d'effets sédatifs (p.ex. associations de psychotropes)
 - d'effets sérotoninergiques (citalopram-sumatriptan)
 - d'effets sur certains électrolytes (K+, Na+, spironolactone-IECA)
 - d'effets indésirables musculaires (p.ex. statines + fibrates)
 - du risque hémorragique (p.ex. antiagrégants + anticoagulants)
 - Antagonisme physiologique (p.ex. des antihypertenseurs avec AINS)
 - Antagonisme pharmacodynamique (p.ex. morphine + agonistes/antagonistes)

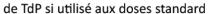
QT et Torsades de pointes

https://crediblemeds.org/

AVAILABLE TDP RISK CATEGORIES

You can select multiple categories.

A


Known Risk of TdP

Risque avéré de QT long et de TdP si utilisé aux doses standard

Possible Risk of TdP

Risque avéré de QT long mais risque potentiel

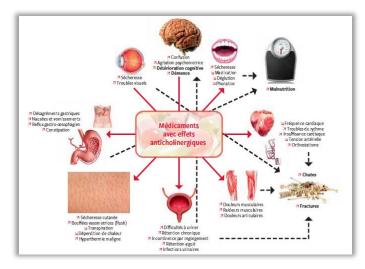
Conditional Risk of TdP

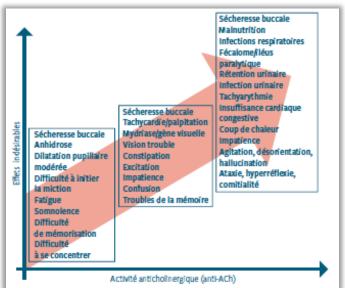
Risque avéré de QT long MAIS de TdP seulement si surdosage ou interaction PK

Drugs to Avoid in Congenital Long QT

Toutes ces catégories, ainsi que les médicaments n'allongeant pas le QT, mais peuvent provoquer des TdP chez les patients avec QT long congénital

https://www.crediblemeds.org





Charge anticholinergique

CRIDECCO¹ https://www.acbcalc.com/

Niveau d'activité catégorisée en score = 1, 2, 3

Score of ≥3 (1 médicament ou cumul de plusieurs médicaments: risque accru d'effets indésirables anticholinergiques

Sydrome sérotoninergique

- Conséquence d'une hyperstimulation des récepteurs 5-HT postsynaptiques due à des taux intrasynaptiques augmentés ou prolongés de sérotonine
- Le syndrome est décrit classiquement comme une triade de manifestations cognitivo-comportementales, neurovégétatives et neuromusculaires.
- Caractère concentration-dépendant
- Survient généralement dans les 24 h suivant l'introduction d'un traitement ou d'un changement de posologie
- Cas rapportés en monothérapies, mais surtout en association de plusieurs médicaments à potentiel sérotoninergique

Syndrome sérotoninergique

Dans les 24 heures suivant une modification de ttt (< 6 h +++)

Diagnostic de syndrome sérotoninergique en présence d'un agent sérotoninergique et de l'un des critères suivants:

- I. Clonus spontané
- 2. Clonus inductible et agitation ou diaphorèse
- 3. Clonus oculaire et agitation ou diaphorèse
- 4. Tremor et hyperréflexie
- Hypertonie musculaire et température > 38°C et clonus oculaire ou inductible

N'oublions pas nos (amies) les plantes

Interactions Médicament-Maladie

Péjorent une co-morbidité

- AINS hypertension et/ou insuffisance cardiaque
- AINS et IRC
- AINS et ulcère peptidique
- Thiazides et goutte
- Metformine et IRC ou ICC

La suite dans la partie II : Aspects pratiques

